Search results for "coherent control"
showing 10 items of 34 documents
Framework for complex quantum state generation and coherent control based on on-chip frequency combs
2018
Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.
Generation and Coherent Control of Pulsed Quantum Frequency Combs
2018
We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…
Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm
2021
We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, connecting the erbium ground state $[\mathrm{Xe}] 4f^{12} (^3\text{H}_6)6s^{2}$ to the excited state $[\mathrm{Xe}] 4f^{11}(^4\text{I}_{15/2})^05d (^5\text{D}_{3/2}) 6s^{2} (15/2,3/2)^0_7$. This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution spectroscopy to extract the $g_J$-factor of the $1299$-nm state and to determine the frequency shift for four bosonic isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms which corresponds to a linewidth of 0.9(1) Hz. The experimental findi…
Vers le contrôle de l'alignement et de l'orientation : théorie et expérience
2010
This thesis is about the control and characterisation of the alignment and orientation of molecules by ultra short laser pulses on a theoretical and experimental approach. Alignment corresponds to a symmetric angular distribution of the molecular axis peaked along the laser field axis, whereas orientation provides an asymmetric distribution favouring one spatial direction. Orientation by sudden two-colour (2+1) pulses is studied extensively for the non resonant case and conditions required for achieving significant orientation are explored. A second two-colour scheme, where the second harmonic is in quasi resonance with a vibrational level of the molecule, is also presented and discussed. T…
Decoherence of the Exciton and Decay of the Excitonic Polaron in Quantum Dots
2005
Bulk-phonon mechanisms of decoherence of an exciton confined in a quantum dot (QD) are considered in order to establish time limitations for the coherent control of the exciton with relevance to its application in quantum information processing. These are the formation and decay of the excitonic polaron. The estimations of characteristic dephasing times for the InAs/GaAs QD are discussed.
Robust control for quantum technologies and quantum information processing
2022
We consider the robust inverse geometric optimization of arbitrary population transfers and single-qubit gates in a two-level system.Robustness with respect to pulse inhomogeneities is demonstrated.We show that for time or energy optimization, the pulse amplitude is constant, and we provide the analytic form of the detuning as Jacobi elliptic cosine.We deal with the task of robust complete population transfer on a 3-level quantum system in lambda configuration.First, we use the Lewis-Riesenfeld method to derive a family of solutions leading to an exact transfer.Among this family, we identify a tracking solution with a single parameter to control simultaneously the fidelity of the transfer, …
Coherent control in single plasmonic nanostructures
2015
Coherent control in plasmonic nanostructures is a door to space-time confinement of optical excitation and femtosecond super-resolution spectroscopy. Towards this goal, here we demonstrate femtosecond pulse-shaping of single gold nanostructure and local phase compensation.
Coherent Control of Stimulated Emission inside one dimensional Photonic Crystals:Strong Coupling regime
2006
The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the ca…
On-chip quantum optical frequency comb sources
2018
Integrated optical frequency comb sources, based on nonlinear microring resonators, can be used to generate complex quantum states. In particular, we achieved multi-photon and high-dimensional entangled quantum states, as well as their coherent control.
Scalable on-chip generation and coherent control of complex optical quantum states
2018
Integrated quantum frequency combs provide access to multi-photon and high-dimensional entangled states, and their control via standard telecommunications components, and can thus open paths for reaching the state complexities required for meaningful quantum information science.